48 research outputs found

    Reproductive Performance of Dairy Cows Affected by Endometritis, Pododermatitis and Mastitis

    Get PDF
    The effects of endometritis, pododermatitis and clinical mastitis on the conception rate and calving-conception interval of multiparous and primiparous cows after fixed-time artificial insemination (FTAI) were evaluated. Clinical endometritis was diagnosed by ultrasonography 20-40 days postpartum upon observation of fluid in the uterine lumen. Cows with clinical endometritis were treated intramuscularly with 2 mg/kg ceftiofur hydrochloride over three consecutive days. Forty-five days after delivery, multiparous and primiparous cows with normal uteri according to ultrasonography were selected for the study, filed and inseminated by FTAI. To identify animals with hoof problems and clinical mastitis and to define their respective groups, the cows were observed daily during morning and nightly milking for up to 60 days after FTAI, and animals with hoof lesions were treated. Animals with clinical mastitis were treated with intramammary infusion containing 88 mg cefquinome sulphate every 12 h after milking for four days. The conception rate of multiparous cows with clinical endometritis at 30 and 60 days after FTAI was negatively affected compared with that of healthy cows with pododermatitis. However, clinical endometritis did not influence the primiparous category, whereas pododermatitis and clinical mastitis did not influence the conception rate of any category at 30 and 60 days after FTAI. Differences were not observed between primiparous or multiparous cows in the calving-conception interval. Keywords: Lactation, Pregnancy, Health, Fertilit

    Decrease in Pneumococcal Co-Colonization following Vaccination with the Seven-Valent Pneumococcal Conjugate Vaccine

    Get PDF
    Understanding the epidemiology of pneumococcal co-colonization is important for monitoring vaccine effectiveness and the occurrence of horizontal gene transfer between pneumococcal strains. In this study we aimed to evaluate the impact of the seven-valent pneumococcal conjugate vaccine (PCV7) on pneumococcal co-colonization among Portuguese children. Nasopharyngeal samples from children up to 6 years old yielding a pneumococcal culture were clustered into three groups: pre-vaccine era (n = 173), unvaccinated children of the vaccine era (n = 169), and fully vaccinated children (4 doses; n = 150). Co-colonization, serotype identification, and relative serotype abundance were detected by analysis of DNA of the total bacterial growth of the primary culture plate using the plyNCR-RFLP method and a molecular serotyping microarray-based strategy. The plyNCR-RFLP method detected an overall co-colonization rate of 20.1%. Microarray analysis confirmed the plyNCR-RFLP results. Vaccination status was the only factor found to be significantly associated with co-colonization: co-colonization rates were significantly lower (p = 0.004; Fisher's exact test) among fully vaccinated children (8.0%) than among children from the pre-PCV7 era (17.3%) or unvaccinated children of the PCV7 era (18.3%). In the PCV7 era there were significantly less non-vaccine type (NVT) co-colonization events than would be expected based on the NVT distribution observed in the pre-PCV7 era (p = 0.024). In conclusion, vaccination with PCV7 resulted in a lower co-colonization rate due to an asymmetric distribution between NVTs found in single and co-colonized samples. We propose that some NVTs prevalent in the PCV7 era are more competitive than others, hampering their co-existence in the same niche. This result may have important implications since a decrease in co-colonization events is expected to translate in decreased opportunities for horizontal gene transfer, hindering pneumococcal evolution events such as acquisition of antibiotic resistance determinants or capsular switch. This might represent a novel potential benefit of conjugate vaccines

    Mechanisms of initiation and reversal of drug-seeking behavior induced by prenatal exposure to glucocorticoids

    Get PDF
    We would like to thank the members of the Neuroscience Research Domain at ICVS for all the helpful discussions and suggestions. We are especially thankful to the animal facility caretakers, and to Drs Sara Silva, António Melo and Ana Paula Silva and Dieter Fischer for their helpStress and exposure to glucocorticoids (GC) during early life render individuals vulnerable to brain disorders by inducing structural and chemical alterations in specific neural substrates. Here we show that adult rats that had been exposed to in utero GCs (iuGC) display increased preference for opiates and ethanol, and are more responsive to the psychostimulatory actions of morphine. These animals presented prominent changes in the nucleus accumbens (NAcc), a key component of the mesolimbic reward circuitry; specifically, cell numbers and dopamine (DA) levels were significantly reduced, whereas DA receptor 2 (Drd2) mRNA expression levels were markedly upregulated in the NAcc. Interestingly, repeated morphine exposure significantly downregulated Drd2 expression in iuGC-exposed animals, in parallel with increased DNA methylation of the Drd2 gene. Administration of a therapeutic dose of L-dopa reverted the hypodopaminergic state in the NAcc of iuGC animals, normalized Drd2 expression and prevented morphine-induced hypermethylation of the Drd2 promoter. In addition, L-dopa treatment promoted dendritic and synaptic plasticity in the NAcc and, importantly, reversed drug-seeking behavior. These results reveal a new mechanism through which drug-seeking behaviors may emerge and suggest that a brief and simple pharmacological intervention can restrain these behaviors in vulnerable individuals.This work was supported by the Institute for the Study of Affective Neuroscience (ISAN). AJR, BC and MC were supported by Fundação para a Ciência e Tecnologia (FCT) fellowship

    TGF-β-Mediated Sustained ERK1/2 Activity Promotes the Inhibition of Intracellular Growth of Mycobacterium avium in Epithelioid Cells Surrogates

    Get PDF
    Transforming growth factor beta (TGF-β) has been implicated in the pathogenesis of several diseases including infection with intracellular pathogens such as the Mycobacterium avium complex. Infection of macrophages with M. avium induces TGF-β production and neutralization of this cytokine has been associated with decreased intracellular bacterial growth. We have previously demonstrated that epithelioid cell surrogates (ECs) derived from primary murine peritoneal macrophages through a process of differentiation induced by IL-4 overlap several features of epithelioid cells found in granulomas. In contrast to undifferentiated macrophages, ECs produce larger amounts of TGF-β and inhibit the intracellular growth of M. avium. Here we asked whether the levels of TGF-β produced by ECs are sufficient to induce a self-sustaining autocrine TGF-β signaling controlling mycobacterial replication in infected-cells. We showed that while exogenous addition of increased concentration of TGF-β to infected-macrophages counteracted M. avium replication, pharmacological blockage of TGF-β receptor kinase activity with SB-431542 augmented bacterial load in infected-ECs. Moreover, the levels of TGF-β produced by ECs correlated with high and sustained levels of ERK1/2 activity. Inhibition of ERK1/2 activity with U0126 increased M. avium replication in infected-cells, suggesting that modulation of intracellular bacterial growth is dependent on the activation of ERK1/2. Interestingly, blockage of TGF-β receptor kinase activity with SB-431542 in infected-ECs inhibited ERK1/2 activity, enhanced intracellular M. avium burden and these effects were followed by a severe decrease in TGF-β production. In summary, our findings indicate that the amplitude of TGF-β signaling coordinates the strength and duration of ERK1/2 activity that is determinant for the control of intracellular mycobacterial growth

    The bed nucleus of stria terminalis and the amygdala as targets of antenatal glucocorticoids: implications for fear and anxiety responses

    Get PDF
    Rationale: Several human and experimental studies have shown that early life adverse events can shape physical and mental health in adulthood. Stress or elevated levels of glucocorticoids (GCs) during critical periods of development seem to contribute for the appearance of neurospyschiatric conditions such as anxiety and depression, albeit the underlying mechanisms remain to be fully elucidated. Objectives: The aim of the present study was to determine the long-term effect of prenatal erxposure to dexamethasone- DEX (synthetic GC widely used in clinics) in fear and anxious behavior and identify the neurochemical, morphological and molecular correlates. Results: Prenatal exposure to DEX triggers a hyperanxious phenotype and altered fear behavior in adulthood. These behavioral traits were correlated with increased volume of the bed nucleus of the stria terminalis (BNST), particularly the anteromedial subivision which presented increased dendritic length; in parallel, we found an increased expression of synapsin and NCAM in the BNST of these animals. Remarkably, DEX effects were opposite in the amygdala, as this region presented reduced volume due to significant dendritic atrophy. Albeit no differences were found in dopamine and its metabolite levels in the BNST, this neurotransmitter was substantially reduced in the amygdala, which also presented an up-regulation of dopamine receptor 2. Conclusions: Altogether our results show that in utero DEX exposure can modulate anxiety and fear behavior in parallel with significant morphological, neurochemical and molecular changes; importantly, GCs seem to differentially affect distinct brain regions involved in this type of behaviors.This study was supported by a grant from the Institute for the Study of Affective Neuroscience (ISAN). AJR is supported by a Fundação para a Ciência e Tecnologia (FCT) grant
    corecore